Close

Advanced School for Computing and Imaging (ASCI)

ASCI office
Delft University of Technology
Building 28, room 04.E120
Van Mourik Broekmanweg 6
2628 XE – DELFT, The Netherlands

E: asci-office@tudelft.nl
P: +31 15 27 88032

Visiting hours office
Monday, Tuesday, Thursday: 10:00 – 15:00

Directions

The ASCI office is located at the Delft University of Technology campus.  It is easily accessible by bicycle, public transport and car. The numbers of buildings can help you find your way around the campus. Make sure you remember the name and building number of your destination.

Contact us at +31 15 278 8032 or send us an email at asci-office@tudelft.nl

Supervised Learning in Medical Image Registration

Supervised Learning in Medical Image Registration

Author : Hessam Sokooti
Promotor(s) : Prof.dr.ir. L.J. van Vliet, Prof.dr. W.J. Niessen en Dr. F.M. Vos
University : Delft University of Technology
Year of publication : 2021
Link to repository : https://scholarlypublications.universiteitleiden.nl/handle/1887/3243762

Abstract

Image registration is the process of aligning images by finding the spatial relation between the images. Assuming two images called fixed and moving images are taken at different time, different spatial location, or via a different imaging technique, the aim of image registration is to find an optimal transformation that aligns the fixed and the moving images. Performing an automatic fast image registration with less manual finetuning can speed up numerous medical image processing procedures. In addition, an automatic quality assessment of registration can speed up this time-consuming task. In this thesis, we developed a fast learning-based image registration technique called RegNet. Predicting registration error can be useful for evaluation of registration procedures, which is important for the adoption of registration techniques in the clinic. In addition, quantitative error prediction can be helpful in improving the registration quality. In this thesis, we proposed two quality assessment mechanisms using random forests (RF) and convolutional long short term memory (ConvLSTM), in which the latter performs faster and more accurate