Advanced School for Computing and Imaging (ASCI)

ASCI office
Delft University of Technology
Building 28, room 04.E120
Van Mourik Broekmanweg 6
2628 XE – DELFT, The Netherlands

P: +31 15 27 88032

Visiting hours office
Monday, Tuesday, Thursday: 10:00 – 15:00


The ASCI office is located at the Delft University of Technology campus.  It is easily accessible by bicycle, public transport and car. The numbers of buildings can help you find your way around the campus. Make sure you remember the name and building number of your destination.

Contact us at +31 15 278 8032 or send us an email at

Application of Sophisticated Models to Conventional Diffusion-Weighted MRI Data

Application of Sophisticated Models to Conventional Diffusion-Weighted MRI Data

Author : Joor Arkesteijn
Promotor(s) : L.J. van Vliet, Prof.dr. W.J. Niessen en Dr. F.M. Vos
University : Delft University of Technology
Year of publication : 2018
Link to repository : TU Delft Research Repository


The brain’s white matter mainly consists of (myelinated) axons that connect different parts of the brain. Diffusion-weighted MRI (DW-MRI) is a technique that is particularly suited to image this white matter. The MRI signal in DW-MRI is sensitized to diffusion of water in the microstructure by introducing strong bipolar gradients in the MRI pulse sequence. By measuring the diffusion in different directions, the local diffusion profile of water molecules is obtained which reflects microstructural characteristics of the white matter.

The focus of this thesis is on the analysis of conventional DW-MRI data acquired in the context of the Rotterdam Scan Study. This is a prospective population-based cohort study with more than 10.000 participants to investigate causes of neurological disease in elderly people. Conventional DW-MRI is defined as diffusion data acquired with a single diffusion-weighting factor and a small number of diffusion-sensitizing gradient orientations. The objectives of this thesis are (1) to enhance our insight in the relation between tissue structure and the DW-MRI signal from conventional DW-MRI sequences, and (2) to develop methods to quantify diffusion properties in the brain as accurately and precisely as possible based on conventional DW-MRI data.